Supplement 1

Distance Metric Proof

A function d(x,y) is a distance metric if it observes the following conditions for all words x and y:

- $d(x,y) = 0 \iff x = y$
- $d(x,y) \ge 0$
- d(x,y) = d(y,x)
- $d(x,y) \ge d(x,z) + d(y,z)$

Proof for
$$d_{SL}(x,y) = 0 \iff x = y$$
:

Three cases need to be considered:

- 1. Words x and y are the same sequences, i.e. they are of the same length and bases at the same position are equal. Thus, no operations are necessary to transform x into y and their distance is 0
- 2. Word x is a prefix of y: x is elongated to match y exactly and no other operations are necessary, in this case we consider x to be equal to y by definition
- 3. Word y is a prefix of x, x is truncated to match the length of y and no further operations are necessary, in this case we consider x to be equal to y by definition

Proof for $d_{SL}(x,y) \geq 0$

There are either no operations necessary to transform x into y $(d_{SL}(x,y) = 0)$ or one needs to apply substitutions, insertions, and deletions to x to transform it into y in which case $d_{SL}(x,y) > 0$.

Proof for
$$d_{SL}(x,y) = d_{SL}(y,x)$$

All operations in this distance measure are symmetrical: An insertion of base B at position p (abbrv. ins(B,p)) is the reversal of deletion of base B at position p (abbrv. del(p)) and vice versa. A substitution of base B_1 with base B_2 at position p ($sub(B_2,p)$) is the reversal of a substitution of base B_2 with base B_1 at position p ($sub(B_1,p)$). Truncation (trunc()) is the reversal of the elongation (elong()) and vice versa.

The distance $d_{SL}(x,y)$ can be expressed as a sequence of operations ins(), del(), sub() followed by either trunc() or elong() to match x with y, e.g.: $x \to \text{sub} \to \text{ins} \to \text{del} \to \text{trunc} \to y$. The reversal operations sequence to transform y to x is obtained by reversing the individual substitution, deletion and insertion operations in reverse order and finalize with the reverse of the elongation or truncation operation: $y \to \text{ins} \to \text{del} \to \text{sub} \to \text{elong} \to x$. The number of these operations is equal to the number of operations to transform x into y and therefore $d_{SL}(y,x) = d_{SL}(x,y)$.

```
Proof for d_{SL}(x, y) \le d_{SL}(x, z) + d_{SL}(z, y)
```

Suppose the transformation of x to z is the result of a sequence of operations $O_{xz} = \langle o_{xz_1}, o_{xy_2}, \cdots, elong/trunc \rangle$. The transformation of z to y is the sequence of operations $O_{zy} = \langle o_{zy_1}, o_{zy_2}, \cdots, elong/trunc \rangle$. By the very nature of these operations, x can be transformed to y by the concatenation of both operation sequences without the elongation or truncation followed by its own truncation or elongation: $O_{xy} = \langle o_{xz_1}, o_{xz_2}, \cdots, o_{zy_1}, o_{zy_1}, \cdots, elong/trunc \rangle$. The number of substitutions, deletions and insertions in O_{xy} is the sum of substitutions, deletions and insertions in O_{xz} and O_{zy} and therefore $d_{SL}(x,y)$ is at most equal to $d_{SL}(x,z) + d_{SL}(z,y)$.

Distance Calculation

Algorithm of distance calculation (pseudocode) using dynamical programming:

```
int function distance (Sequence sequence1, Sequence sequence2)
 set length_1 to length of sequence1
 set length_2 to length of sequence2
declare distances[length_1+1][length_2+1]
for i from 0 to length_1
  set distances[i][0] to i
for j from 0 to length_2
 set distances[0][j] to j
// Classical Levenshtein part
 for i = 1 to length_1
  for j = 1 to length_2
  set cost to 0
  if (sequence1[i-1] not equal to sequence[j-1])
   set cost to 1
  set distances[i][j] to minimum of
              distances[i-1][j-1] + cost,// Substitution
              distances[i][j-1] + 1,
                                       // Insertion
              distances[i-1][j] + 1 // Deletion
 set min_distance to distances[length_1][length_2]
// New Sequence-Levenshtein part
 // Truncating
for i from 0 to length_1
  set min_distance to minimum of min_distance and distances[i][length_2]
// Elongating
 for j from 0 to length_2
  set min_distance to minimum of min_distance and distances[length_1][j]
```

Code Rates

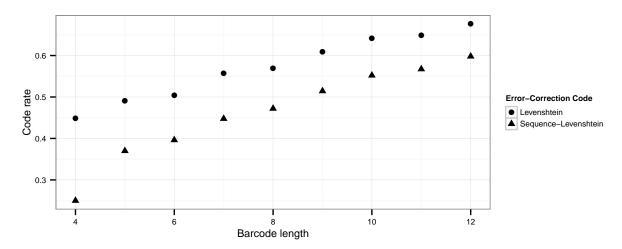


Figure S1. Code rates of Levenshtein and Sequence-Levenshtein codes depending on the length of codewords.

Sizes of Sequence-Levenshtein Codes

n d	3	5
4	5	1
5	13	2
6	27	3
7	77	5
8	188	8
9	612	17
10	2123	40
11	5714	90
12	20887	232
13	-	(554)
14	-	(1583)

Table S1. Sizes of Sequence-Levenshtein Codes Code sets were filtered for biological/chemical eligibility (c.f. Methods). We did not formally analyse or simulate barcodes of length n=13nt or n=14nt.

Codes used in Simulation 3

Of every code, a random subset of 48 barcodes was used. The details of these codes are clarified in Table S2.

Code Type	Length	Distance	Code Size
Levenshtein	6	3	66
Levenshtein	9	5	67
Sequence-Levenshtein	7	3	77
Sequence-Levenshtein	11	5	90
Linear	5	3	48
No Correction	3	NA	60

Table S2. Codes of Simulation 3